
A-A097 350 LEHIGH UNIV BETHLEHEM PA CENTER FOR THE APPLICATION--ETC 
F/ 20/11

F SOM4E THOUGHTS ON MATERIAL STABILITY. (U)

FEB al R S RIVLIN NIO0l'4-76-C-0235

UNCLAS7SIFIED CAM-100136 NL

El EEEEEEEEEEEEo
EohhEmhEmhEEEE



-TIM ----

~Lehigh

1Auun/. un iversiiy

1EVE%/0
SOME THOUGHTS ON kjATERIAL STABILITY~

0 - by

TECHNICAL REPORT NO, ICAM-100-36 6 Feray-18

OFFICE OF NAVAL RESEARCH CONTRACT NO, 'N00O14-76-C-O'235

Center for the
Application of
Mathematics
(CAM)

81 4 6 004



Some Thoughts on Material Stability

by

R.S. Rivlin

Lehigh University, Bethlehem, Pa., U.S.A.

Abstract

The paper is concerned with some underlying physical

considerations which bear on the development of restrictions

on the strain-energy function for an elastic material which

may undergo finite deformations. Some comments are also made

on the possible use of the strain-energy function at deforma-

tions for which a necessary condition for material stability

is violated.
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1. Introduction

The main difficulty which arises in discussing material

stability is any clear concept in physical terms of what the

term implies. We have only the vague notion that some restric-

tions should be placed on constitutive equations, other than

those which result from invariance under superposed rigid

motions and material symmetry, to ensure that the material

modelled is well-behaved physically. However, the precise sense

in which the material is to be well-behaved is not entirely

clear.

Nevertheless, we can recognize certain physical behavior

which is clearly unacceptable, i.e. certain situations can be

recognized as evidencing instability. This fact enables us to

discuss in a meaningful way necessary conditions for material

stability even though it may be fruitless to attempt to obtain

sufficient conditions.

In classical elasticity theory certain restrictions can be

placed on the elastic moduli, the violation of which implies

material instability. For an isotropic material, these are the

conditions that the shear and compression moduli both be posi-

tive. They result from the fundamental consideration that if

either of the moduli is negative, the material will undergo a

deformation from its assumed initial homogeneous state even

though no forces are applied to it. However, even in this case,

it is by no means evident that the assumption of positive shear

and compression moduli are sufficient to ensure stability. That

this is the case is evident from the discussion in 5§5 and 6 of
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the role of thermal and other fluctuations in effecting in-

stability.

The search for necessary conditions for material stability

of isotropic elastic materials subjected to finite deformations

has been greatly influenced by the corresponding problem in

classical elasticity theory. However, physical points of depar-

ture, which in the classical infinitesimal theory lead to the

same conditions on the elastic moduli, when transposed into the

context of finite elasticity theory may lead to quite different

restrictions on the strain-energy function. We shall not, in

this paper, discuss the various rather complicated restrictions

on the strain-energy function for isotropic elastic materials

which have been obtained. Rather, we will concentrate on some

rather general considerations of a physical character which pro-

vide the basis for such relations. We shall also make some

comments on the possible use of a strain-energy function at de-

formations for which one or other of the necessary conditions for

material stability is violated. It is emphasized that these

comments are advanced tentatively and are intended only to draw

attention to certain questions which arise when a strain-energy

function is used at such deformations.
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2. Infinitesimal deformations

If an isotropic elastic material is subjected to infinitesi-

mal deformations, the strain-energy W per unit volume is given

by

W (tr e) , (2.1)

where e is the infinitesimal strain matrix and X and j are

the Lame constants for the material. e is defined in terms of

the displacement vector u by

where the dagger denotes the transpose.

A possible definition of material stability, in this case,

is that W is positive definite. That this is a necessary con-

dition is evident from the fact that if W is negative for some

e , the material will be unstable in its undeformed state. The

condition that W be positive definite is easily seen to be

equivalent to the conditions

> 0 , 2P + 3X > 0 . (2.3)

In physical terms, the conditions (2.3) state that the shear

and compression moduli must be positive. Together they imply that

A + P > 0 ,(2.4)



i.e. the equibiaxial plane strain modulus is positive. The con-

ditions (2.3) and (2.4) together imply that Young's modulus E

is positive, i.e.

E = P(2u+3X) > o (2.5)

However, (2.4) and (2.5) do not imply (2.3) and hence do not

provide sufficient conditions for W to be positive definite.

Nor can one of the condi-ions (2.4) and (2.5) be taken with one

of the conditions (2.3) to imply that W is positive definite.

A necessary condition for material stability which is some-

times considered is the Hadamard condition that the speeds of all

plane waves, propagated in a body of the material filling three-

dimensional space, be positive. The necessary and sufficient con-

ditions for this to be the case are

V > 0 , X + 2P > 0 . (2.6)

These conditions are equivalent to the condition that the acous-

tic tensor be strongly elliptic. The second of the conditions

(2.6) also has the statical interpretation that the tensile

modulus, when the dimensions normal to the direction of stretch

are fixed, be positive.

While the conditions (2.-) imply the conditions (2.6), the

converse is not true. Accordingly, the Hadamard conditions are

weaker than the condition that W be positive definite.

If the deformations are infinitesimal, we do not distinguish
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between the Cauchy stress a and the Piola-Kirchhoff stress HI

They are given by

a - R - 3W/ae , (2.7)

It can easily be seen that the condition that W be positive definite

is equivalent to the condition that it be a convex function of e

The convexity of W can be expressed algebraically as

W(e2 ) - W(ej) > tr{(e 2 -el)l} , (2.8)

where el and e2 are two strains and n, and H2 are the

corresponding stresses. The condition (2.8) is in turn equivalent

to the condition

tr{(112 -111)(e 2 -!)} > 0 . (2.9)

If the elastic material is anisotropic, it can still be shown

quite easily that positive definiteness of W is equivalent to

convexity expressed by either of the conditions (2.8) or (2.9).
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3. An attempted generalization

It is evident that if we remove the condition that the defor-

mations be infinitesimal, positive semi-definiteness of W , re-

garded as a function of the deformation gradients, remains a

necessary condition for material stability. It is then tempting

to try to find equivalent convexity conditions with which to re-

place the convexity conditions (2.8) and (2.9) which are valid for

the case of infinitesimal deformations. Such a generalization was

attempted by Coleman and Noll [1] in 1959.

They considered a deformation in which a particle initially

in vector position X moves to x . Let XA(A=1, 2 ,3 ) and

xi(i=l,2,3) be the components of X and x respectively in a

rectangular cartesian coordinate system. Then the deformation

gradient matrix g is defined by

= giAII = H1axi/aXA1 • (3.1)

The strain-energy W , per unit initial volume, is then a

scalar function of g . Coleman and Noll [1) suggested that the

convexity condition (2.8) be replaced by the condition

W(g2 ) - W(g1 ) > tr{(g 2-91)U} , (3.2)

where g1 and g2 are the deformation gradient matrices corres-

ponding to any two deformations related by

92 = ' (3.3)
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where s is a symmetric matrix, and H 1 and 112 are the corres-
,

ponding Piola-Kirchhoff stress matrices . The relation (3.3)

implies that the deformation corresponding to 92 may be obtained

from that corresponding to g1  by superposing on the latter a

pure homogeneous deformation. The condition (3.2), with (3.3),

has been called by Truesdell and Toupin [2] the C-N condition, and

they showed that it is equivalent to the condition

tr{(g 2 -g1 )(n 2-11)} > 0 , (3.4)

which they called the GCN condition.

That the C-N and GCN conditions are not necessary conditions

for material stability is evident from a much earlier result

obtained by Rivlin [3] in 1948. He considered the pure homogene-

ous deformation of a unit cube of incompressible neo-Hookean

material by specified forces acting normally to its faces and

uniformly distributed over them. If the strain-energy W is

given in terms of the principal extension ratios A A2, XA3 by

W IC(X2+A 2+A 33) C 3.5)

where C is a positive constant, then the applied forces

flf 2 f3 are given by

fi =  CAi - p/Ai (i=1,2,3) , (3.6)

Ii '(2) i
* li 11R[Ai 11 q 2 1 "lAi
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where p is a hydrostatic pressure which is arbitrary if the

X's are specified. Since the material is incompressible, the

X's must satisfy the relation

A I A 1 . (3.7)

If the f's are specified, then equations (3.6) and (3.7) pro-

vide four simultaneous equations for the determination of the

X's and p . These do not necessarily have a unique solution and

consequently if the applied forces are specified the resultant

equilibrium states of pure homogeneous deformation may not be

uniquely determined. Certain of these equilibrium states may be

unstable and which of the stable states is attained will, in

general, depend on the manner in which the applied forces are in-

creased from zero to their final values.

For example [4], if the f's are all equal and tensile, i.e.

fl = f = f3 = f , say, with f > 0 , there are seven possible

pure homogeneous equilibrium states:
(i) X, X 2 = 3 = 1

(ii) X1 = 2 , 3 < f/C

(iii) X1 =X , f/C > A >-i f/C2 3 3

and states obtained from (ii) and (iii) by cyclic permutation of

the subscripts on the X's.

The state (ii) and the two further states obtained from it

are stable, while the state (iii) and the two further states

obtained from it are unstable. The undeformed state (i) is stable
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or unstable accordingly as f/C < 2 or > 2

It was shown by Truesdell and Toupin [2] that if the C-N

or GCN conditions are satisfied, the relation between the forces

and principal extension ratios for pure homogeneous deformation

of a cube of the material are uniquely invertible. Accordingly,

these conditions are not satisfied by an incompressible neo-

Hookean material to which three equal tensile forces are applied,

even if these are small. Since materials exist for which the neo-

Hookean strain-energy function is fairly accurately valid and

which show no evidence of material instability, we conclude that

the C-N and GCN conditions are not necessary conditions for mater-

ial stability. A heroic attempt was made by Truesdell and Noll

[5] to salvage these conditions as necessary for material stability.

They asserted that the C-N and GCN conditions should be applied

only to compressible materials. However, they failed to explain

how the unique invertibility of the force-principal extension ratio

relations for a slightly compressible material can, in the limiting

case when the material is incompressible, yield multiple widely-

separated equilibrium states of pure homogeneous deformation for

specified forces.

The condition that the strain-energy function, regarded as a

function of g , be globally convex may be expressed as

W(g 2 ) - W(gl) > tr{(g 2 -g1 )T11 } , (3.8)

where -2 and g, are the deformation gradient matrices corres-

ponding to any two states of deformation, not necessarily connected
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by the relation (3.3).

Since the C-N and GCN conditions are less severe restric-

tions on the strain-energy function than global convexity, the

latter is not a necessary condition for material stability.

Local convexity at a point may be expressed by the relation

62W > 0 , (3.9)

where 62W denotes the second variation of W at that point.

This may, in turn, be written as

a W 6x 6xB > 0 (3.10)
xi,Aaxj,B iA j

for all arbitrary variations 6x i,A of the deformation

gradients. The relation (3.10) may be rewritten as

6IAi xi,A > 0 , (3.11)

where 6HAi is the variation in the Piola-Kirchhoff stress

corresponding to the variation 6xi, A  in the deformation

gradients. In matrix notation (3.11) becomes

tr(6IhS) > 0 .(.2

Although we do not know whether the local convexity con-

dition (3.11) is a necessary condition for material stability,
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it certainly becomes such if certain restrictions are placed on

the variations Xi,A ' SAi and on the underlying Piola-Kirchhoff

stress H Ai " Illustrations of such cases are given in the next

section. In each of them the total work in the incremental de-

formation is done by only one of the components of n.

We denote this component of H by f and the corresponding

deformation gradient by e . Then, the condition (3.11) becomes

6fse > 0 ; (3.13)

i.e. the f-c relation must have positive slope. This is

evidently a necessary condition for material stability. The

implications of its violation will be discussed in §5. The

condition (3.13) is, of course, equivalent to the condition that

the incremental modulus P defined by

1' = aflBe , (3.14)

be positive.
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4. Some restricted convexity conditions

In this section we describe certain situations in which the

local convexity condition (3.11) reduces to the form (3.13) and

accordingly provides a necessary condition for material stability.

In each of these situations a rectangular block of elastic material,

not necessarily isotropic, with its edges parallel to the axes of

a rectangular cartesian coordinate system x , is assumed to

undergo a pure homogeneous deformation with principal extension

ratios X1 ,X2,X 3 and principal directions parallel to the axes

of the system x .

We consider a rectangular block of the material to be cut

from the parent block, with edges parallel to the axes of a rect-

angular cartesian coordinate system x which may or may not

coincide with the system x . This is held in its deformed state

by appropriate forces. We now superpose on the deformation existing

in this block an infinitesimal static deformation. For our purposes

this is most conveniently described in the coordinate system x

Case 1. The system x has arbitrary orientation with respect to

the system x and the infinitesimal superposed deformation con-

sists of a simple shear with the xl-direction as the direction of

shear and the x1x2 -plane as the plane of shear. The incremental

shear modulus must then be positive for material stability.

Case 2. The system x has an arbitrary orientation with respect

to the system i and the infinitesimal superposed deformation is

a pure homogeneous deformation with one principal direction paral-

lel to the xl, say, axis, while the dimensions of the block

parallel to the x. and x 3 axes are held fixed. We shall call

this constrained simple extension. The incremental modulus in
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the 1-direction must then be positive for material stability. It

is evident, however, that this condition becomes meaningless when

the material is incompressible.

Case 3. The system x has one axis, say x2, parallel to one

of the axes, say 52 , of the system T , but is otherwise of

arbitrary orientation. In the underlying pure homogeneous defor-

mation, the faces of the block normal to 32 are force-free and

remain so in the infinitesimal superposed deformation which is

pure homogeneous and has principal directions parallel to the

axes of the system x and zero extension in the x3 , say,

direction. The incremental tensile modulus must then be positive

for material stability.

Case 4. The system x has all of its axes parallel to those of

the system x , while both the initial finite and superposed

infinitesimal deformations are simple extensions parallel to one

of the axes, say x1 * The incremental tensile modulus must then

be positive for material stability.

The restrictions which these conditions impose on the strain-

energy function for an isotropic elastic material have been and

remain the subject of extensive investigation. The results which

have already been obtained are often complicated and in some cases

surprisingly difficult to achieve. We shall not pursue this rather

intricate matter here.
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S. Instability for one-dimensional deformations

In this section we shall discuss simplistically the extension

e by a tensile force f of a thin uniform weightless rod of elas-

tic material with initial length L . We assume that f in-

creases monotonically with e for values of e below some value

em at which f has the maximum value fm For higher values of

e , f is assumed to decrease monotonically with increase in e .

The f-e relation is shown schematically in Fig.l(a). The portion

of the f-e curve on which the modulus p = df/de is positive is

denoted I . That on which it is negative is denoted II

The energy W stored elastically in the rod is given by

W = f(e)de , (5.1)
0

and

f(e) = dW (e) (5.2)

The dependence of W on e is shown schematically in Fig.l(b)

and we note that W increases monotonically with e , but has a

point of inflexion when e = em

Suppose the rod is held, with its ends fixed, in the homo-

geneous state of deformation corresponding to the point P1 on the

portion II of the f-e curve. Then, f,e = fl el, say. Now,

suppose the applied force is reduced to f2 If the extension

increases to e2 , as we might expect from Fig.l(a), so that the

point P2  is reached, the work done is (e2 -el)f 2 , while the

increase in strain-energy is f(e)de Since
e
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(e 2 -eI)f 2 < e2 f(e)de (5.3)

the deformation cannot take place. The question arises - what

will, in fact, occur? We shall defer discussion of this until

later in this section.

Again, suppose that the rod is held, with its ends fixed, in

the homogeneous state of deformation corresponding to the point

P1  in Fig.l(a) and now the constraint on one end of the rod is

removed so that a dead-load f acts on the rod. If the exten-

sion of the rod increases to e2 , the work done by the dead-load

is (e2-e )f1  and the strain-energy increases to 2 f(e)de

Since e 1

(e2 -e )fI > 1e 2  f(e)de (5.4)
-e1

the deformation can take place and when the extension e 2 is

attained the load will have a kinetic energy of amount

(e -e )f1 - 2 f(e)de .(5.5)

If a homogeneous equilibrium state can be attained by the rod,

the f-e curve must reverse slope, either as shown in Fig.2(a)

or in Fig.2(b). We denote by III the rising portion of the

curve beyond the extension at which the minimum value of f occurs.

We now return to the situation in which the rod is held with

its ends fixed a distance L + e apart. We shall, however, not

assume that the rod is homogeneously deformed. Let Z be the
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distance, in the undeformed state, of a generic particle of the

rod from one end. Let £(L) be the strain at this particle in

the deformed state and let w(e) be the strain-energy per unit

initial length. Then, the total strain-energy W in the rod is

given by

w - w(e)d. (5.6)

0

The kinematic constraint on the rod is expressed by

Le()dl = e (5.7)

0

For equilibrium, the first variation 6W of W must be

zero, for all variations 6f(Z) of E(Z) which satisfy the

constrain condition (5.7) and hence the condition

f t(Z)dt = 0 (5.8)
0

With (5.6), we obtain

L
6 J 4 :l ( 0 .(5.9)

0

Taking account of the constraint (5.8) by introducing the

(constant) Lagrange multiplier -f , we obtain from (5.9)

f i dw()/de b5.10)

f is the tension in the rod. Thus, the equilibrium state of the



18.

rod is characterized by the condition that the tension is constant

throughout the rod.

From Fig.2 we see that the following possibilities exist:

(i) The rod is homogeneously deformed.

(ii) Part of the rod is in one state and the remainder in

another state; these are states corresponding to the

constant value of f which lie on two of the three

segments I, II, III.

(iii) Parts of the rod are in each of three states. These

are the three states corresponding to the constant

value of f which lie on the segments I, II, III of

the f-e curve.

We now consider the stability of these possible equilibrium

states.

An equilibrium state is unstable if the second variation

62W of W is negative fz'r some kinematically possible variation

6c(t) of e(t) From (5.6) and (5.10), we have

L 2 L2W = I d I(,) (6Ed)2 (f.I1)
- 1 wE 6)deZ-1~~~~ (6E) d, . (5.11)

2 f de 2  2 j0 0

In case (i) when the rod is homogeneously deformed, df(E)/dE

and hence 62w is negative if the extension of the rod corres-

ponds to a point on the segment II of the f-e curve. The

corresponding equilibrium state is, accordingly, unstable. We

observe that this instability certainly obtains as soon as the

extension em is passed and we shall see later that it may arise

earlier.
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We now pass to case (ii). We consider an equilibrium state

in which a part L1 of the rod, of total initial length L1 ,

is subjected to a uniform strain e1 , while the strain in the

remainder L2 , of total initial length L2 , is also uniform

but of magnitude e 2 * Let w(c) be the strain-energy per unit

initial length when the strain is c . Then, the total strain-

energy W in the rod is given by

W = L 1W(Cl) + L2w(e2 ) (5.12)

We have also

L = L1 + L2 , e = L 1 + L2E 2  (5.13)

We obtain from (5.12)

6W w(ElSL1 + w(e 2 )6L 2 + LI dwE 1 - (S 1 + L2 -dw- 2  6 2
2dl1 2 e 2

(5.14)

From (5.13) we obtain the kinematic constraints on

ULI ,  6L 2 ,  6E1 ,  6 2  :

6L1  6L2 = 0 , L1 6e1 + L2 6C2 + £16L 1 + £26L2 = 0 (5.15)

The equilibrium condition 6SW = 0 for all kinematically

possible variations 6LI,..,2 yields

dw(Ez) dw( 2 )

= 2 f, say, (5.10)
d1 d2
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and

w(C2 ) - w(C 1 ) - f(C 2 - 1) (5.17)

The relation (5.16) expresses the fact that at equilibrium

the tensions in the parts L1 and L2  of the rod are equal. The

relation (5.17) is the well-known Maxwell relation. If £i and

C2 correspond to points B,C lying on the segments I and II of

the f-c curve, as shown in Fig.3, the relation (5.17) cannot be

satisfied for any value of f , since w(E2 ) - W(cl) is the

area of the vertically hatched region in Fig.3, while f(E2- e)

is the necessarily smaller area of rectangle ABCD.

Similarly, if El and E2 correspond to points C,F

lying on the segments II and III of the f-E curve, the relation

(5.17) cannot be satisfied for any value of f , since w(c2)-w(cl)

is the area of the horizontally hatched region in Fig.3 and

f(E2- E1) is the necessarily greater area of the rectangle DCFE.

However, if E1 and E2 correspond to the points B,F

lying on the segments I and III of the f-E curve, as shown in

Fig.4, the relation (5.17) can be satisfied by choosing f so

that the striated areas above and below the line f = constant

are equal. This line f = constant is sometimes called the

Maxwell line. We emphasize that the critical value of f and

hence those of E 1 and E2 are independent of the detailed

shape of segment II of the f-c curve and depend only on the

area under it. It can be shown that the equilibrium state deter-

mined in the above manner is stable.

Since the value of f corresponding to the Maxwell line

determines E1 and F2 , if c is specified Li and L, can
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be determined from equations (5.13).

This analysis is, of course, dependent on the assumption that

an element of the rod can pass freely between the states of strain

I and £2 For this to be the case, thermal or other fluctua-

tions must be present of sufficient magnitude to allow the tension

in the element to reach the value of f corresponding to the maxi-

mum of the f-e curve, at any rate instantaneously.

It will be recognized that the model outlined above is in

accord with that presented in texts on thermodynamics for isother-

mal reversible first-order phase transitions.

Now suppose that fluctuations of sufficient magnitude, for

the processes outlined above to take place, are not present. Then

the overall extension of the rod, at which transitions in a part

of it to strain values corresponding to points on segment III take

place, is greater than that determined by the Maxwell line. In

the limiting case when there are no fluctuations, it will reach

the value L m Then, as the overall extension Lem is exceeded

the transition takes place dynamically and the calculation of the

manner in which it occurs would be rather complicated and,

indeed, there is some doubt that it could be carried out purely

on the basis of the f-e curve of the type considered so far.

The reason for this doubt will appear more clearly in the next

section, in which is discussed a specific physical situation in

which force-induced transitions from one twinning mode to another

take place in quartz.

If the force f is applied as a dead load, as soon as it

reaches the value fm a transition will take place in the whole

-- -- . . . . .
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rod to the point on the segment III of the f-e curve corres-

ponding to this value of f The kinetic energy of the load will

then be

f mL(e 2- E )  [ w(E2)-W(E:l)]

The rod will accordingly oscillate about this state and if the

material has any internal friction will eventually reach equili-

brium at the point on III corresponding to the load fm

We will now how that the situation (iii) in which parts

LI' L2 ' L3 of the rod are in three different states corresponding

to points on segments I, II, III respectively of the f-c curve

does not represent a possible equilibrium condition for the rod.

Let L1 , L2 , L3 be the total initial lengths of Ll. L2 $ L3

respectively and let cI' s2 2 3 be the strains in them in the

deformed state in which the total extension of the rod is e

Then,

L 1 + L2 + L3 = L 1,EI + L2E2 + L3E3 =e (.18)

The total strain-energy IV is given by

W = L1w(El) + L2w(e 2) + L3w(C 3 ) (5.19)

The equilibrium condition SW = 0 for all kinematically possible

variations 6L ,. .,@ 3 yields

3I
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dw(el) dwc 2) dw (E3
d 1  d 2 ECE- f , say

and (5.20)

wE 2)- w(e1 ) = f(e 2 -El) , W(E 3) - W(C2 ) = Cc3-C 2 )

By reasoning similar to that used in discussing case (ii) it is

evident that the last two relations in (5.20) cannot be satisfied.

So far we have considered extension of the rod and the con-

comitant transition of the whole or parts of it from states on

segment I to states on segment III of the f-e curve. If such

transitions have taken place and we now decrease the extension

quasistatically, then provided that the fluctuations are large

enough for the tension in the rod to decrease below the value of

f corresponding to the minimum on the f-e curve, the whole pro-

cess will be reversed and transitions will take place from the

state on segment III to the state on segment I determined by the

Maxwell line. If the fluctuations are not large enough for this

to occur, extension of the rod will have to be further reduced

before a transition can take place.

Finally, we note that whether or not the rod can rest in two

different states when the tension in it is zero will depend on

whether segment III of the f-e curve does or does not intersect

the abscissa of the f-e curve (see Fig.2). If such an inter-

section exists, the rod will have an equilibrium state With

zero tension provided that the fluctuations are not too large.
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6. Force-induced change of twinning mode in quartz

Quartz is crystalline silica, SiO 2 . It can exist in two

crystalline forms, the so-called c-form, which is normally stable

at ordinary temperatures and the a-form which is the stable form

above 573 0C.

c-quartz, the form with which we shall be concerned here,

belongs to the trigonal-trapezohedral symmetry class (32). It

has a single axis of three-fold rotational symmetry, usually

called the optic axis, and, in the plane perpendicular to this,

three axes of two-fold rotational symmetry, often called electric

axes, as shown schematically in Fig.S. The crystal has no plane

or center of symmetry.

Structurally, a crystal of a-quartz consists of tetrahedra

at the corners of which the oxygen atoms are located. A silicon

atom is located at the center of each tetrahedron, and each oxygen

atom is chemically bonded to two silicon atoms. If we start at,

say, a silicon atom we can trace out a helix, with its axis

parallel to the optic axis, on which lie a succession of silicon-

oxygen-silicon-oxygen atoms. This helix may form a left-handed

or a right-handed screw. As a result of this screw-like structure,

if a beam of plane-polarized light is transmitted parallel to the

optic axis, its plane of polarization is rotated and we distin-

guish between left-handed and right-handed quartz accordingly as

the plane of polarization is rotated in the sense of a left-

handed or right-handed screw. A single crystal of a-quartz may

consist in part of left-handed and in part of right-handed quartz

and is then said to be optically twinned. We shall not be concerned

with this type of twinning here.
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There is, however, another type of twinning which occurs in

s-quartz. This is called Dauphinj, or electrical twinning, and

occurs in the following way. We have a crystal for which the

optic axis is, say, the outward drawn normal to the paper in

Fig.S. The crystal consists entirely of left-handed quartz or

entirely of right-handed quartz. However, in part of the crystal,

the electric axes are directed as shown in Fig.5(a) while in the

remainder they are rotated from these directions through 1800

about the optic axis, i.e. as shown in Fig.5(b).

If a plate of an untwinned crystal is cut with its major

surfaces normal to one of the electric axes and compressed by

forces acting on these surfaces, an electrical potential differ-

ence is developed across the plate, i.e. the crystal is peizo-

electric. For an electrically twinned plate the magnitude of the

potential difference is reduced as a result of the fact that the

potential differences produced in the differently oriented parts

of the plate are of opposite sign.

It can be seen by examining a model of the structure of

quartz that a crystal oriented as shown in Fig.5(b) can be conver-

ted into one oriented as shown in Fig.5(a) by relatively small

displacements of the individual oxygen atoms relative to the sili-

con atoms.

It is found experimentally that an electrically twinned

crystal of, say, left-handed a-quartz can in certain circumstan-

ces be converted to an untwinned crystal of the s;ame hand by the

application of appropriate forces. This process is greatly

facilitated by raising the temperature of the crystal unti it

approaches or exceeds the a- transition temperature and then
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cooling it before removal of the forces.

An effective method [6] of promoting this transition is to

cut from an untwinned crystal of a-quartz a rectangular plate with

its length perpendicular to the optic axis. The plate is subjec-

ted to torsion by means of couples about the length direction.

If -he couple is large enough the plate will transform into a

crystal of the opposite twin (equivalent to a rotation of the

structure through 180 about the optic axis) except in narrow

layers at the two free edges. The magnitude of this force depends

on the angle 0 between the normal to the plate and the optic

axis and on the angle @ between the projection of this normal

on the plane perpendicular to the optic axis and the positive

direction of a two-fold symmetry axis.

W.A. Wooster and N. Wooster [6] measured the torsional couple

necessary to produce a change from one twinning mode to the other

as a function of e and 0 . The results they obtained are

illustrated in the three-dimensional polar diagram of Fig.6, in

which the optic axis is vertical and the polar distance is propor-

tional to the inverse of the torque necessary to produce the trans-

formation. The upper lobes, labelled with a + sign, relate to

transformation in one direction and the lower ones, labelled with

a - sign, to transformation in the opposite direction. The

maxima on the upper lobes correspond to (6,0) = (450 ,300)

(450,1500), (45',2700) and those on the lower lobes to (8,0) =

(1350,300), (1350,1500), (1350,2700). In addition to these lobes,

Wooster and Wooster found six further similar lobes which are

not shown in Fig.6. Three of these, with maxima at (0,0) =

(1350,900), (1350,2100), (1350,3300), relate to transformation in
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the same direction as the upper lobes shown. The remaining three,

with maxima at (O,O) = (450,90° ), (45',2100), (450,3300), relate

to transformation in the opposite direction.

In [7] and [8], W.A. Wooster and Thomas proposed a theory to

explain these experimental results, based on the assumption that

whether or not a transformation will take place, when the plate is

subjected to dead-loading by a torque, is determined by the differ-

ence in the total energies of the system with the plate in the

transformed and untransformed states. We denote these energies

by ET and EU  respectively. Then, if EU > ET , the trans-

formation will take place; otherwise it will not. It is further

assumed that if EU > ET  the torque required to produce the trans-

formation is a mon-)tonically decreasing function of EU ET

This energy difference can be easily calculated from the known

elastic constants of a-quartz.

When the plate is subjected to a torque, the stress in the

plate is predominantly a shearing stress which increases linearly

with distance from the axis of torsion. We denote the appropriate

shear compliances for the material of the plate in its trans-

formed and untransformed states by KU  and KT respectively.

Then, it can easily be seen that EU ET is given by an

expression of the form

EU - ET = C(KT-KU)M , (6.1)

where M is the applied torque and C is a positive constant

which depends on the dimensions of the plate. The compliances

KT and KU can both be calculated from the known compliance

T U,. . .... -, ,. . . .• .. . ...
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matrix for a-quartz, KT - KU being given by an expression of

the form

KT - 1U = Ksin26sin3c , (6.2)

where K is a constant. It is easily seen that, with (6.2),

equation (6.1) yields a three-dimensional polar diagram, in which

the radial distance from the pole is proportional to EU - ET

of the same general form as Fig.6.

The experimental fact, already noted, that the transformation

from one twinning mode to another does not take place near the

free edges of the plate is easily explained by the theory. To do

so we note that when a thin plate is subjected to a torsion, the

shearing stress at the free edges must be zero.

The theory outlined above can evidently be generalized, at

any rate in principle, to other types of deformation and bodies of

other geometries. However, the predictions are not always in

accord with the experimental observations. This may be due to the

fact that as soon as a change of twinning mode has been initiated

at one point of the body, we are faced with a boundary-value

problem involving an inhomogeneous body. The stress distribution

associated with the prescribed loading may then be very different

from that which was assumed to exist either initially or in the

final state when complete transformation has taken place. Further-

more, the theory considers only a quasistatic change from one

twinning mode to another and does not take account of the dynamics

of this transformation.

It can easily be seen that a theory of the dynamics of the
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transformation from one twinning mode to the other cannot be based

on an elastic strain-energy function which depemds on the macro-

scopic deformation gradients alone. Presumably when a load is

applied to the crystal, the relative positions of the oxygen and

silicon atoms change, for sufficiently small loads, in a rever-

sible fashion, and, at any instant, depend on the current value

of the deformation gradient matrix. Accordingly, for sufficiently

small loads the stress can be determined from a strain-energy

function which depends only on the current value of the deforma-

tion gradient matrix. However, when some critical value of the

load is reached, this configuration becomes unstable and the atoms

snap into a new relative configuration. During this snap-through

the relative positions of the oxygen and silicon atoms will not

depend in a unique fashion on the macroscopically measured value

of the macroscopic deformation gradient matrix and accordingly

the stress cannot be derived from a strain-energy function which

depends only on the deformation gradient matrix. If the positions

of the oxygen atoms relative to the silicon atoms are described by

appropriate internal variable fields, then it may be possible, in

principle, to derive the stress from a strain-energy function

which depends on these fields as well as on the deformation grad-

ient matrix. However, for this to be the case it would be neces-

sary that in the snap-through of the atoms from positions

appropriate to one twinning mode to positions appropriate to the

other twinning mode, no significant amount of energy is irrever-

sibly communicated to internal degrees of freedom of the atoms.
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